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Abstract 
A simple but efficient method for the analysis of vibrations 
of elastic plastic shallow shells with damping due to crack 
generation and its propagation during vibrations is 
presented. The method is based on the concept of iso-
deflection contour lines in conjunction with Ilyushin’s 
method of small elastic-plastic deformation. The governing 
differential equations are derived and solved with 
illustration. 
Keywords: Crack Development, Damped 
Oscillations, Propagation. 

Introduction 

Considerable interest has been shown in the past in 
the analysis of vibration of shallow shells. This 
interest has been engendered by the widespread use 
of shallow shells structures in engineering and 
building design, especially, in several of the present 
day high technology industries. For example, the 
industry of nuclear power generation, defense and 
space material manufacture and modern building 
industry are industries where shell structure analysis 
is important due to severe vibration that many 
modern structures are expected to withstand. 
However, despite the simplified nature of shallow 
shell theory and the effect that has been expanded in 
the area, relatively few solutions are known when the 
materials behaves plastically. Moreover, in all 
practical purposes, every vibrating structure is 
expected to experience some resisting forces 
resulting in a vibration, damped to some extent. Also, 
damping becomes obvious when cracks / flaws are 
generated within the structures due to numerous 
reasons. In practice, it is very important to note that 
the materials are not perfectly elastic but those 

undergo significant plastic deformation at the tip of 
crack. Moreover, the external load system is 
restricted in simplified linear theories but for proper 
estimation of the problem nonlinear analysis is 
inevitable.  It is well known that as and when crack is 
produced within the materials of the structure 
degradation of its material properties will start and 
consequently flexural rigidity (D) will change, which 
in turn, changes the nonlinear deflections parameters 
and nonlinear time period of vibrations. 

The present paper aims at investigating the dynamic 
responses of elastic plastic shallow shells with 
moderate damping caused by crack generation and its 
propagation through structures using constant 
deflection contour lines method whose validity and 
applicability have already been established by several 
investigators [2-5]. 

Derivation of the Governing Differential 
Equations for a Non Cracked Structure 
and a Cracked Structure 

(a) For the case of dynamic responses of a 
shallow shell of uniform thickness:  

 

Let us consider a shallow shell of thickness ‘h’ of an 
elastic-plastic material. Let the equation of the 
middle surface of the shell referred to a system of 
orthogonal coordinates (x, y, z) be given by  
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                           Figure-I:    Iso-deflection contour lines with axes system 
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                           Figure –II:  Cylindrical and spherical shallow domes. 

When the shell vibrates in a normal mode, then at any instant t, the intersections between the deflected surface and 
the parallels z= constant yield contours which after projection onto z=0 surface are the level curves called the ‘lines 
of equal deflection”. Let us denote the family of such curves by u(x,y)= constant. For   axi-symmetric free 
vibrations, the intersections of the deflected surface and the parallels z = constant yield contour lines of constant 
deflection. Application of D` Alembert`s principle to an element of the shell bounded by such a contour at any time 
τ and subsequent summation of the forces in the direction normal to the surface yields the following dynamical 
equations [1] : 

 ∫ Vn ds  +∫ ∫ [ρ h  ( ∂ 2 w ) / ∂ τ 2+ ( N x ) / R x+( N y ) / R y+ 2( Nxy )/R xy ] dx dy  =  0                              (2)          

The transverse reaction forces, Vn=Qn-∂/∂s( Mnt ) (  in absence of fractures),                                             (3)                                                                                                                            
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                              Vn = Qn  - ∂/∂s( Mnt ) – F(Ϭ, l ,Y) ( in presence of crack)                                     (4) 

Represents the effect of the shearing force Qn and the edge-rate of change of twisting moment Mnt 

along the contour  Cu ,                   

  l = 	∑	s2
i, (all possible crack lengths (s) are to be taken into account),   

According to Ilyushin`s theory of the elastic plastic deformation (1948), the bending moments Mx, My, Mxy 

and their shear forces Qx,  Qy  are given by the following relations: 
 
                                Mx = - D ( 1 – ν ) { (∂2w/∂x2) + ν (∂2w/∂y2)} 
                                My = - D ( 1 – ν ) { (∂2w/∂y2) + ν (∂2w/∂ x2)} 
                                Mxy = D ( 1 – ν ) ( 1 – Ω ) (∂2w / ∂x∂y )                                                                 (5) 
                                Qx = (∂/∂x) { M y} – (∂/∂y) {Mxy} 
                                Qy = (∂/∂y) { M x} – (∂/∂x) { M xy) } 
                                Qn = Qx Cosα + Qy Sinα 
                                                                                                                                      
                                Mnt = Mxy ( Cos2 α - Sin2 α ) + (Mx - My) Sin α Cosα                                              (6) 
 
Where, Cosα = (dy / ds ) and Sinα = - ( dx / ds ) .  
 
Here, ρ, h and w are respectively , the mass density, the shell thickness and the deflection. Using the well 
known expressions for the moments and shearing forces and assuming that the membrane forces N x,,  
N y and Nxy are given by 
 
N x = (∂ 2 Φ / ∂ y2 ), N y =( ∂ 2 Φ / ∂ x 2 ), N xy= - ( ∂ 2 Φ / ∂ x ∂ y )                                                             (7) 
 
Equation (2) finally reduces to: 
 
(∂ 3w/∂ u 3) ∫( 1 - Ω ) Rds + (∂ 2w/∂ u 2) ∫( 1 - Ω ) F ds + (∂w/∂ u) ∫( 1 - Ω ) G ds 
+ (∂ 2w/∂ u 2) ∫ D [(∂ Ω /∂ x ) (∂ u /∂ x ) + (∂ Ω /∂ y ) (∂ u /∂ y ) ] √ t ds + (∂w/∂ u) ∫ (D / √ t ) [K(∂ Ω /∂ x ) + L 
(∂ Ω /∂ y )] ds + ∫∫ [ρ h (∂2 w/∂ τ 2 ( 1/ R x )( ∂ 2 Φ / ∂ y2 ) + ( 1 / R y ) ( ∂ 2 Φ / ∂ x 2 ) - 
2 / ( R xy ∂ 2 Φ / ∂ x ∂ y ] dx dy = 0                                                                                                            (8) 
Where,    R = - D t3/2 ,  
               F = - D / (√t) [3 u, xx u,x 2 +3 u,yy u,y2 + u,xx u, y +u,yy u,x 2 4 u,xy u,x u,y ] 
               G = - D / (t )1 ..5 [ u, xxx u, x 3 + u,yyy u,y3 + ( 2 – ν ) ( u, xxx u,x u,y 2+u, xy u, y3 + u,yyy u,y u,x 2  

                                  + u,xyy u,x 3 ) + ( 2 ν - 1 ) ( u,xyy u, x u, y 2 + u,xxy u, x 2 u, y ) + ( 1 – ν ) ( u,xx – u,yy ) 
                          ( u,xx u,y 2 – u,yy u,x 2 )  -2 (1 – ν ) u, xy ( u, x u, y u,xx – u,y 2 u,xy - u,x 2 u,y + u,x u,y u,yy ) ] 
                       + 2 D ( 1 – ν )/ (t) 2.5 [ u,xy ( u,x 2 – u,y2 ) – u,x u,y ( u,xx –u,yy ) ] 2 

                     √t = ( u,x 2 + u,y2  ) and 
                D = ( E h 3 / 12 (1 – ν2 ) , is the flexural rigidity. 
Here, Ω = 0 when e ≤ 1, the region is elastic ; when e > 1 the region is plastic.  
Also,         Ω = λ [ 1 – ( 3 / 2e ) + ( 1 /2e3 )                                                                                               (9) 
And e2 =  (h2/3es 2) [(∂2w/∂x2)+(∂2w/∂y2 )+(∂2w/∂x∂y)+(∂2w/∂x2) (∂2w/∂y2  )                                                     (10) 
= (h2/3e 2s) [ M (∂w/∂u)2+ N(∂w/∂u) (∂ 2w/∂u2) (∂w/∂u) + t 2 (∂ 2w/∂u2) 
in which es is the yield strain, ν is the poisson`s ratio, D is the flexural rigidity of the plate material, λ is a 
material constant . 
Here ,           M =[ u , xx 2 + u, yy 2 + u,xx u, yy + u,xy 2 ] 
                     N = [ 2 u,x2 u,xx + 2 u,y 2 u,yy + u,xx u, y 2 +u,x u,yy + 2 u,x u,y u,xy ] 
Since the transverse vibration is of prime concern, the effects of the longitudinal  and latitudinal inertia 
terms may be neglected, and one can further  assume  
                                     w = W( x, y )F (t)                                                                                                (11) 
                                     Φ = Φ ( x, y ) F(t)                                                                            (12) 
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Equation (8) will now reduce to 

[(∂ 3W/∂ u 3) ∫ ( 1 - Ω ) Rds + (∂ 2W/∂ u 2) ∫( 1 - Ω ) F ds + (∂W/∂ u) ∫( 1 - Ω ) G ds 
+ (∂ 2W/∂ u 2) ∫ D [(∂ Ω /∂ x ) (∂ u /∂ x ) + (∂ Ω /∂ y ) (∂ u /∂ y ) ] √ t ds + (∂W/∂ u) ∫ (D / √ t ) [K(∂ Ω /∂ x ) + L 

(∂ Ω /∂ y ) ] ds ] F(t) + ∫∫[ρ h W (t) (∂ 2F/∂ t 2)  +{ ( 1/ R x )( ∂ 2 Φ / ∂ y2 ) + ( 1 / R y ) ( ∂ 2 Φ / ∂ x 2 ) 

- 2 / ( R xy ∂ 2 Φ / ∂ x ∂ y } F(t)] dx dy = 0                                                                                                  (13) 
 
Consequently, the condition for continuity of deformation reduces  

        4 Φ = { 12D (1 – ν 2 ) } / h 2 ( 1 - Ω ) [( 1/ R x )( ∂ 2 w / ∂ y2 ) + ( 1 / R y )( ∂ 2 w / ∂ x2 ) - 2 ( 1/ R xy )( ∂ 2 w / 
∂ x ∂ y )                                                                                                                                                    (14) 
This equation must hold over all points in the interior of the shell. After integration over the area and 
application of Greens theorem one obtains: 

(d3Φ/du3     )∫  Rds +( d2 Φ/du2     )∫  Fds +( dΦ/du  ) ∫  Gds * -12D2 ( 1 – v2 ) / h2 ( 1 - Ω )( dW/du )  

∫[ Kx ( ∂ u / ∂y )2  +  Ky  ( ∂ u / ∂x )2 / t½  ] ds  =  0                                                                                              (15)                                                                                               

Where Kx and Ky denote curvatures at a point and K xy has been assumed to be zero in accordance with 

the shallow shell theory. Equations (13) and (14) are now the two basic equations for large amplitude 

vibration of shallow shell.                                                                                   

Illustration                                                            

Let us now consider a clamped dome of non-zero curvature upon an elliptic base. Under symmetry 

consideration we may write:          u = 1 - x 2 / a 2 - y 2 / b 2                                                              (16) 

Performing the contour integral taken around the closed contour:  u = 1 - x 2 / a 2 - y 2 / b 2 = constant and 

the double integration extending over the ellipse:      x 2 / a 2  +  y 2 / b 2   = 1 - u                          

Equation (13) in non dimensional form becomes 

 F(t)( 1  - Ω ) ( 1 – u ) (d 3W/d u 3 )  - 2  ( 1  - Ω ) (d 2W/d u 2 )   - ( d Ω / d u ) [ ( 1  -  u ) (d 2W/d u 2 )  - 2 P {  

( 1/ a 4 )  +  ( 1  / b 4 )  + 2 ν / a 2 b 2 ) ( d W / du )  ] +(ρ h 2 ω 2 P) / (2  D e s a 2)  (∂ 2F/∂ t 2) +( dF / dt )[kd P  

/ (2  D e s a 2) ]      - {( E h γ)/D } (d Φ/ du )F(t)  =  0                                                                                    (17)           

Where,    P  =   ( a 4 b 4 ) / (3 a 4  +2 a 2 b 2 +  3 b 4 ), while equation ( 14) in non dimensional form will 

reduce to ( 1 – u)  ( d 3 Φ / du 3 )  - 2(d 2 Φ/ d u2 )  + ( 1 - Ω ) γ ( d W / d u )  =  0          

                                                                                                                                                                           (18)                                               

with γ = p ( kx / b2 + ky / a2 ) ;  W = w h/  es a
2 ; Φ =  φ/ E e s a 2                                                       

Method of Solution 
 

On substitution of the value of Ω into equations (17)    &   (18), one obtains 
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[( 1 – u ) (d 3W/d u 3)  -  2(d 2W/d u 2 )]  Q 1 F(t) -   [ 2M (d 2W/d u 2 ) ( d W / du ) + N(d 2W/d u 2 ) 2      + 

N(d 3W/d u 3)  ( d W / du )  +  2 t 2 (d 3W/d u 3)  ( d W / du )  ]   [( 1 – u )(d 2W/d u 2)  - 2 P 1( d W/du)]Q 2 

F3 ( t)   - (Eh γ/D)F(t) ( d  Φ / du) + (ρ h P  (∂ 2F/∂ t 2) / (2  D e s a 2) + kd  P (dF/dt)/ 2  D e s a 2)  = 0      (19)                                                                         

and  ( 1 – u )  ( d 3 Φ / du 3 )    - 2(d 2 Φ/ d 2 u )   +  Q 1 γ( d W / d u )    = 0                                              (20)                                       

where ,  Q 1 =  [  2 e 3 (  1 – λ )  + λ ( 3 e 2 – 1 )] /2 e 3     ;             Q 2  =  (λ/4 e5)( e 2 – 1)a4
                                                                                      

 P 1  = P ( 1/ a 4 + 1/ b 4 + 2   ν/ a 2 b 2 ) 

Also, e 2  is given by 

  e 2 =  ⅓[ M ( d W / du ) 2  + N  ( d W / du ) ( d 2W/d u 2 ) +  t 2 (d 2W/d u) 2]                                         (21)                              

Suppose the shell is completely clamped along the boundary. The Clamped edge 

boundary conditions are given by 

   W = 0  =   ( dW /du)     ;                    Φ   = 0      =    (d Φ/du)     

          u=0                       u= 0                       u= 0                                u=0 

With these conditions, equations ( 19) & (20) are to be solved for W & Φ. However, they 

do not appear to yield exact solutions and some form of approximation is needed. Here 

the Galerkin’S method is used. The dependent variables in equations (19) & (20) are 

approximated by the following trial solutions: 

              To find an approximate solution, we assume the following trial solutions: 

                                       W =  Σ w j u j  ;    Φ  = Σ ᶲ j  u j                                                                                    (22)   

Practically the series starts at j=2  as  w 1 and   ᶲ 1     must vanish if the approximate solutions are to 

satify the boundary conditions. Substitution of the trial solutions in equations (19) & (20) produces the 

residuals 

R1    = [ (I-u) Σ j (j-1)(j-2) wj u
j-3   - 2  Σ j (j-1)   wj u

j-2 ] Q1  F(t) – [ 2M Σ j
2 (j-1)   wj u

2J-3 + N    Σ  j
2 (j-1)   wj

2 u 2J-4   

  + N    Σ  j (j-1)(J-2)   wj
2 u 2J-4  + 2t2 Σ    j

2 (j-1) (j-2)wj
2 u 2J-5  ] [ (1-u) Σ j (j-1)   wj u

j-1 

- 2P  Σ j (j w j u
j-1  ] Q1 F

3 (t)   + (ρ h P  (∂ 2F/∂ t 2) / (2  D e s a 2) + kd  P (dF/dt)/ 2  D e s a 2)                         ( 23) 

R      = [ (1-u)  Σ j (j-1)(j-2) ᶲ j u
j-3 - 2  Σ j (j-1)   ᶲ j u

j-2   + Q1  Σ  j ᶲj u
j-1 ]  F(t)                                             (24) 

While e 2 is now given by   

e 2 =  ⅓[ M   Σ j
2 w 2j u

2J-2  + N  Σ  j (j-1)   wj
2 u 2J-3     +  t 2 Σ  j (j-1)2   wj

2 u 2J-4  ]                                      (25) 
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To find the co efficient wj  and  ᶲj for j= 2,3,4……..n, we solve the following two sets of equations in 

accordance with Galerkin’s  orthogonality procedure (limits of integration from ‘0’ to ‘1’) 

                  ∫ R1 (u) uj  du  =0,                   j=2,3,4,…………n                                                                            (26) 

                   ∫ R2 (u) uj  du  =0,                  j=2,3,4,…………n                                                                            (27) 

It is necessary to find the average value of ‘e’ over the domain of the ellipse given in equation (12)  is to 

be computed. As demonstration of the solution for the simple case n=2 is substituted into the above 

equations. The following results yield: 

(ρ h2 P  (∂ 2F/∂ t 2) / ( 6 D e s a 2) + kd  P (dF/dt)/(  6D e s a 2)  = [ (4/3) Q1 w2   + ᶲ2  (Eh γ/2D)] F(t)  + 

[(4M/5) +(2N/3  - (32MP1/5)   - 4NP1 ] Q2  w
3 2 F

3(t)                                                                                (28) 

And   ᶲ 2  = (3/8) γ Q1  w2                                                                                                                                (29) 

While the average value of ‘e’ happens to be 

    ē  =w2 √ [ 1/ a 4 + 1/ b 4 + 2   ν/ a 2 b 2 ]√(40/9)                                                                                           (30) 

From equiations (33) & (34) one obtains the following time differential equation in F(t): 

                                                   F(t)  +  C1  (d
2 F (t)/ dt2 )  + C2( dF(t)/dt)    +  C3 F

3(t)  = 0                             (31) 

where        C1   = -(ρ h2 P) /( 6 D e s a 2) [ (4/3) Q1 w2   + ᶲ2  (Eh γ/2D)] 

                   C2   =-   kd  P  [ 4/3   + (3Eh γ2/16D)] Q1  w2  ]/  [ (4/3) Q1 w2   + ᶲ2  (Eh γ/2D)] 

C3=  [ 4M/5 + 2N/3 – 32 M P/5 – 4NP ] Q2  w
3 2]/ [ (4/3) Q1 w2   + ᶲ2  (Eh γ/2D)] 

Since the series is rapidly converging hence considering the first few terms of the series one can obtain 

the approximate values of the central deflection ‘ W0‘   

                       W0 = Σ wj,           [j= 2 to n] 

The solution of equation (31)   is given by 

       F(t)   =  a 0   e –C
1

 t  Sin [ C2 t { 1 +  (3/8) a 0 
2( C3 / C2 ) e –C

1
 t    }  + θ 0  ]                                                (32) 

The time periods of the non-linear and linear oscillations are                                                       
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 T*  =  2π/ [ C2 { 1 +  (3/8) a 0 
2( C3 / C2 ) e –C

1
 t  ]    and  T =  2π/ C2. 

Thus     [T* /T ]  =[  1 +  (3/8) a 0 
2( C3 / C2 ) e –C

1
 t  ]-1 ,  for non- cracked material  .                             (33)  

Thus     [T* /T ]  = [  1 +  (3/8) a 0 2( C*3 / C*2 ) e –C
1

 t  ]-1 ,  for a cracked material                                      (34) 

Where       C*2   =- ( 6 D* e s a 2)/ ρ h2 P [ 4/3   + (3Eh γ2/16D*)] Q1  w2
 

                   C*3=  - ( 6 D* e s a 2)/ ρ h2 P [ 4M/5 + 2N/3 – 32 M P/5 – 4NP ] Q2  w
3 2 

D* is a function of crack length and stress intensity factor during crack generation. 

Numerical   Results 

Numerical results are computed both for elastic and elastic plastic shells based on elliptic planform and these are 
presented in tables ( 1 – 2 ) and  through graphs (III-IV). The computations are made with different values of the 
shallowness parameter ( 2 γ / h ) and material constant ν = 0.3. Moreover, effect of crack   are computed with the 
same equation only changing the term for Vn in equation (4) and making  subsequent changes in other equations. 
It is found that as crack is generated within the material of the structures, degradation of the magnitudes of the 
elastic constants took place causing a sharp fall in the magnitude of the stress developed within the material body. 
Consequently, the ratio [T* /T] increases . This is due to the fact that as cracks grow in sizes, elastic reaction falls 
and the magnitude of stress become smaller and smaller, resulting enhancement of time period which is obvious.  
It is interesting to note that the behavior of Plastic shell is just reverse that of elastic shells which are reflected in 
the results shown in figures III and IV. 

  TABLE- I:  Damped vibration of Plastic shallow shells. R = a/b , 2 γ / h  = 0, ν = 0.3 , λ =1 

R 

=a/b 

Time    W0 0.0 0.5 1.0 1.5  2.0 Ref. 

[6]  

1.0 

1.0     t=0 sec 1.0000 1.0256 1.1111 1.2903 1.6666 1.2000 

1.0 t=5 sec. 1.0000 1.0204 1.0869 1.2195 1.4706 …… 

1.0     t = 10 sec. 1.0000 1.0152 1.0638 1.1561 1.3658 …… 

1.0    t= 20 sec. 1.0000 1.0114 1.0471 1.1126 1.2195 ….. 

2.0     t=0 sec 1.0000 1.0866 1.4682 3.5398 26.6241 1.4500 

2.0 t=5 sec. 1.0000 1.0681 1.3351 2.3474 12.8431 ….. 

2.0     t = 10 sec. 1.0000 1.0502 1.2365 1.7550 4.2533 ….. 

2.0    t= 20 sec. 1.0000 1.0372 1.1675 1.4704 2.3403 ….. 
 TABLE- II:  Damped vibration of Elastic shallow shells.      R = a/b , 2 γ / h  = 0, ν = 0.3 , λ =1 

R 

=a/b 

Time    W0 0.0 0.5 1.0 1.5  2.0 Ref. 

[6]  

2.0 

1.0     t=0 sec 1.0000 0.9582 0.8513 0.7179 0.5887 0.6000 

1.0 t=5 sec. 1.0000 0.9662 0.8774 0.7608 0.6415 …… 

1.0     t = 10 sec. 1.0000 0.9744 0.9052 0.8092 0.7047 …… 

1.0    t= 20 sec. 1.0000 0.9808 0.9272 0.8498 0.7609 ….. 



International Journal of Engineering Sciences Paradigms and Researches Vol. 05, Issue 01, June 2013 
ISSN (Online): 2319-6564 
www.ijesonline.com 
 

IJESPR 
www.ijesonline.com 

11 
 

2.0     t=0 sec 1.0000 0.8778 0.0423 0.4436 0.3098 0.3000 

2.0 t=5 sec. 1.0000 0.8976 0.6917 0.4994 0.3594 ….. 

2.0     t = 10 sec. 1.0000 0.9229 0.7496 0.5708 0.4280 ….. 

2.0    t= 20 sec. 1.0000 0.9402 0.7996 0.6395 0.4894 ….. 

     

 

 

                                                                                                                                                             T=0sec                                                                                                                       

T*/T                                                                                                                                                     T=5 sec 

                                                                                                                                                             T=1osec    

        T=2o sec 

                                          R= a/b =1                          R= a/b =2 

                   

                                                    W0 a0 

     Figure-III: Effect of damping of an elastic shallow shell. 

                         1.4       -                 

                       1.35         - 

                        1.3        - 

                        1.25       - 

              T*/T    1.2      - 

                         1.15    - 

                          1.1        - 

                          1.05      - 

                         1.0 /  0                            0.25                    0.5                     0.75                    1.0 

                                                                           W0 a0 

                Figure-IV: Effect of damping of a Plastic shallow shell 
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Observations and Conclusions 

It is observed that the results of the present study 
without exhibiting the effect of damping are in good 
agreement with those obtained from other methods. 
The results for damped oscillations seem to be 
completely new. The results for elastic deformations 
of circular and elliptic domes are compared with the 
available results [6]. It is clear from the results that 
the effect of damping becomes considerably higher 
and higher as the crack is developed and when it 
grows in sizes within the material bodies and also as 
the amplitude of vibrations increases both for elastic 
and plastic shells. It is also evident that the ratio of 
the nonlinear to linear time periods approaches to 
unity as and when the duration of damping force 
increases. For large amplitude vibrations the velocity 
of crack propagation increases which in turn 
enhances the damping force causing the nonlinearity 
to play a great role. 

Though, the elastic –plastic deformation of the shell 
is analyzed with ease and accuracy by using 
Ilyushin’s theory for small plastic deformation in 
conjunction with the method of constant deflection 
contour lines, still the method heavily relies on the 
accuracy in the choice of the iso-deflection contour 
function u(x,y). In this study this function is assumed 
to be the same for corresponding fully elastic case. 
The main advantage of this method lies in the fact 
that once the deflection contour function u(x,y) is 
chosen suitably, the remaining task is very 
straightforward  and only by knowing the shape of 
the deflection function one can easily solve problem 
with arbitrary shaped boundary.  
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